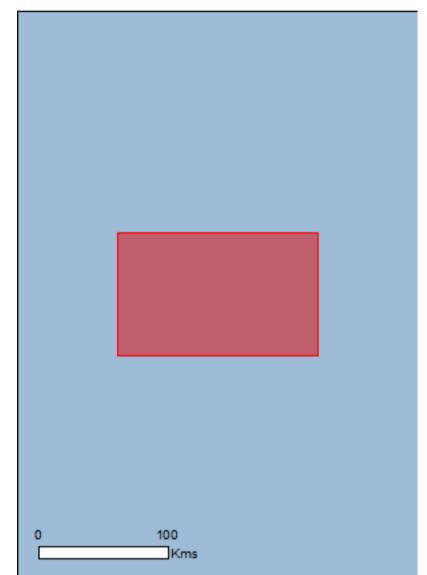
Appendix A Matters of National Environmental Significance Search Results

Australian Government

Department of the Environment and Energy

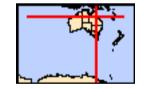
EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected.


Information on the coverage of this report and qualifications on data supporting this report are contained in the caveat at the end of the report.

Information is available about <u>Environment Assessments</u> and the EPBC Act including significance guidelines, forms and application process details.

Report created: 02/08/19 11:37:44


Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat

<u>Acknowledgements</u>

This map may contain data which are ©Commonwealth of Australia (Geoscience Australia), ©PSMA 2010

Coordinates Buffer: 1.0Km

Summary

Matters of National Environmental Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance:	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	None
Listed Threatened Ecological Communities:	4
Listed Threatened Species:	25
Listed Migratory Species:	17

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Land:	None
Commonwealth Heritage Places:	None
Listed Marine Species:	22
Whales and Other Cetaceans:	None
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have nominated.

State and Territory Reserves:	1
Regional Forest Agreements:	None
Invasive Species:	28
Nationally Important Wetlands:	5
Key Ecological Features (Marine)	None

Details

Matters of National Environmental Significance

Listed Threatened Ecological Communities

[Resource Information]

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Name	Status	Type of Presence
Brigalow (Acacia harpophylla dominant and co- dominant)	Endangered	Community known to occur within area
Natural Grasslands of the Queensland Central	Endangered	Community likely to occur
<u>Highlands and northern Fitzroy Basin</u> Poplar Box Grassy Woodland on Alluvial Plains	Endangered	within area Community may occur
ropial box Glassy woodland on Alluvial Flains	Lindangered	within area
Semi-evergreen vine thickets of the Brigalow Belt	Endangered	Community likely to occur
(North and South) and Nandewar Bioregions		within area
Listed Threatened Species		[Resource Information]
Name	Status	Type of Presence
Birds		
Calidris ferruginea		
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area
Erythrotriorchis radiatus		
Red Goshawk [942]	Vulnerable	Species or species habitat likely to occur within area
Geophaps scripta scripta		
Squatter Pigeon (southern) [64440]	Vulnerable	Species or species habitat
		likely to occur within area
Neochmia ruficauda ruficauda		
Star Finch (eastern), Star Finch (southern) [26027]	Endangered	Species or species habitat
	5	likely to occur within area
Numenius madagascariensis		
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat
,	,	may occur within area

Poephila cincta cincta Southern Black-throated Finch [64447]	Endangered	Species or species habitat likely to occur within area
<u>Rostratula australis</u> Australian Painted-snipe, Australian Painted Snipe [77037]	Endangered	Species or species habitat likely to occur within area
<u>Tyto novaehollandiae kimberli</u> Masked Owl (northern) [26048]	Vulnerable	Species or species habitat may occur within area
Mammals		
<u>Dasyurus hallucatus</u> Northern Quoll, Digul [Gogo-Yimidir], Wijingadda [Dambimangari], Wiminji [Martu] [331]	Endangered	Species or species habitat likely to occur within area

Name	Status	Type of Presence
Macroderma gigas		
Ghost Bat [174]	Vulnerable	Species or species habitat likely to occur within area
Petauroides volans		
Greater Glider [254]	Vulnerable	Species or species habitat may occur within area
Phascolarctos cinereus (combined populations of Qld, N	NSW and the ACT)	
Koala (combined populations of Queensland, New South Wales and the Australian Capital Territory) [85104] Rhinolophus robertsi	Vulnerable	Species or species habitat known to occur within area
Large-eared Horseshoe Bat, Greater Large-eared Horseshoe Bat [87639]	Vulnerable	Species or species habitat may occur within area
Saccolaimus saccolaimus nudicluniatus		
Bare-rumped Sheath-tailed Bat, Bare-rumped Sheathtail Bat [66889]	Vulnerable	Species or species habitat likely to occur within area
Plants		
Bulbophyllum globuliforme		
Miniature Moss-orchid, Hoop Pine Orchid [6649]	Vulnerable	Species or species habitat likely to occur within area
Cycas ophiolitica		
[55797]	Endangered	Species or species habitat likely to occur within area
Dichanthium setosum		
bluegrass [14159]	Vulnerable	Species or species habitat likely to occur within area
Eucalyptus raveretiana		
Black Ironbox [16344]	Vulnerable	Species or species habitat known to occur within area
Livistona lanuginosa		
Waxy Cabbage Palm [64581]	Vulnerable	Species or species habitat known to occur within area
Omphalea celata		
[64586]	Vulnerable	Species or species habitat likely to occur within area

Samadera bidwillii
Quassia [29708]

Vulnerable

Species or species habitat likely to occur within area

Reptiles		
Denisonia maculata Ornamental Snake [1193]	Vulnerable	Species or species habitat likely to occur within area
<u>Egernia rugosa</u> Yakka Skink [1420]	Vulnerable	Species or species habitat known to occur within area
<u>Lerista vittata</u> Mount Cooper Striped Skink, Mount Cooper Striped Lerista [1308]	Vulnerable	Species or species habitat known to occur within area
Sharks		
Pristis pristis Freshwater Sawfish, Largetooth Sawfish, River Sawfish, Leichhardt's Sawfish, Northern Sawfish [60756]	Vulnerable	Species or species habitat likely to occur within area
Listed Migratory Species * Species is listed under a different scientific name on	the EPBC Act - Threatened	[<u>Resource Information</u>] d Species list.
Name Migratory Marine Birds	Threatened	Type of Presence

Name	Threatened	Type of Presence
Apus pacificus Fork-tailed Swift [678]		Species or species habitat likely to occur within area
Migratory Marine Species		
Crocodylus porosus		
Salt-water Crocodile, Estuarine Crocodile [1774]		Species or species habitat likely to occur within area
Pristis pristis		
Freshwater Sawfish, Largetooth Sawfish, River Sawfish, Leichhardt's Sawfish, Northern Sawfish [60756]	Vulnerable	Species or species habitat likely to occur within area
Migratory Terrestrial Species		
Cuculus optatus		
Oriental Cuckoo, Horsfield's Cuckoo [86651]		Species or species habitat may occur within area
Monarcha melanopsis		
Black-faced Monarch [609]		Species or species habitat likely to occur within area
Monarcha trivirgatus		
Spectacled Monarch [610]		Species or species habitat may occur within area
Motacilla flava		
Yellow Wagtail [644]		Species or species habitat may occur within area
Myiagra cyanoleuca		
Satin Flycatcher [612]		Species or species habitat known to occur within area
Rhipidura rufifrons		
Rufous Fantail [592]		Species or species habitat may occur within area
Migratory Wetlands Species		
Actitis hypoleucos		
Common Sandpiper [59309]		Species or species habitat may occur within area
Calidris acuminata		

Species or species habitat

Sharp-tailed Sandpiper [874]

may occur within area

<u>Calidris ferruginea</u> Curlew Sandpiper [856]

Calidris melanotos Pectoral Sandpiper [858]

Gallinago hardwickii Latham's Snipe, Japanese Snipe [863]

Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]

Pandion haliaetus Osprey [952]

Tringa nebularia Common Greenshank, Greenshank [832] Critically Endangered Species or species habitat may occur within area

Species or species habitat may occur within area

Species or species habitat may occur within area

Critically Endangered

Species or species habitat may occur within area

Species or species habitat known to occur within area

Species or species habitat may occur within area

Other Matters Protected by the EPBC Act

Listed Marine Species		[Resource Information]
* Species is listed under a different scientific name on	the EPBC Act - Threatened	Species list.
Name	Threatened	Type of Presence
Birds		
Actitis hypoleucos		
Common Sandpiper [59309]		Species or species habitat may occur within area
Anseranas semipalmata		
Magpie Goose [978]		Species or species habitat may occur within area
Apus pacificus		
Fork-tailed Swift [678]		Species or species habitat likely to occur within area
Ardea alba		
Great Egret, White Egret [59541]		Breeding known to occur within area
<u>Ardea ibis</u>		
Cattle Egret [59542]		Species or species habitat may occur within area
Calidris acuminata		
Sharp-tailed Sandpiper [874]		Species or species habitat may occur within area
Calidris ferruginea		
Curlew Sandpiper [856]	Critically Endangered	Species or species habitat may occur within area
Calidris melanotos		
Pectoral Sandpiper [858]		Species or species habitat may occur within area
Chrysococcyx osculans		
Black-eared Cuckoo [705]		Species or species habitat known to occur within area
Gallinago hardwickii		
Latham's Snipe, Japanese Snipe [863]		Species or species habitat may occur within area

Haliaeetus leucogaster White-bellied Sea-Eagle [943]

Merops ornatus Rainbow Bee-eater [670]

Monarcha melanopsis Black-faced Monarch [609]

Monarcha trivirgatus Spectacled Monarch [610]

Motacilla flava Yellow Wagtail [644]

Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat known to occur within area

Species or species habitat may occur within area

Species or species habitat likely to occur within area

Species or species habitat may occur within area

Species or species habitat may occur within area

Species or species habitat known to occur within area

Name	Threatened	Type of Presence
Numenius madagascariensis		
Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat may occur within area
Pandion haliaetus		• • • • • • • •
Osprey [952]		Species or species habitat known to occur within area
Rhipidura rufifrons		
Rufous Fantail [592]		Species or species habitat may occur within area
Rostratula benghalensis (sensu lato)		
Painted Snipe [889]	Endangered*	Species or species habitat likely to occur within area
Tringa nebularia		
Common Greenshank, Greenshank [832]		Species or species habitat may occur within area
Reptiles		
Crocodylus porosus		
Salt-water Crocodile, Estuarine Crocodile [1774]		Species or species habitat likely to occur within area
Extra Information		
State and Territory Reserves		[Resource Information]
Name		State
Hells Gate		QLD
Invasive Species		[Resource Information]
Weeds reported here are the 20 species of national significance (WoNS), along with other introduced plants that are considered by the States and Territories to pose a particularly significant threat to biodiversity. The		

that are considered by the States and Territories to pose a particularly significant threat to biodiversity. The following feral animals are reported: Goat, Red Fox, Cat, Rabbit, Pig, Water Buffalo and Cane Toad. Maps from Landscape Health Project, National Land and Water Resouces Audit, 2001.

Name	Status	Type of Presence
Birds		
Acridotheres tristis		
Common Myna, Indian Myna [387]		Species or species habitat likely to occur within area

Columba livia Rock Pigeon, Rock Dove, Domestic Pigeon [803]

Lonchura punctulata Nutmeg Mannikin [399]

Passer domesticus House Sparrow [405]

Streptopelia chinensis Spotted Turtle-Dove [780]

Sturnus vulgaris Common Starling [389]

Frogs

Rhinella marina Cane Toad [83218]

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat known to occur within area

Name	Status	Type of Presence
Mammals		
Bos taurus		
Domestic Cattle [16]		Species or species habitat likely to occur within area
Canis lupus familiaris		
Domestic Dog [82654]		Species or species habitat likely to occur within area
Capra hircus		
Goat [2]		Species or species habitat likely to occur within area
Equus caballus		
Horse [5]		Species or species habitat likely to occur within area
Felis catus		
Cat, House Cat, Domestic Cat [19]		Species or species habitat likely to occur within area
Feral deer		
Feral deer species in Australia [85733]		Species or species habitat likely to occur within area
Lepus capensis		
Brown Hare [127]		Species or species habitat likely to occur within area
Mus musculus		
House Mouse [120]		Species or species habitat likely to occur within area
Oryctolagus cuniculus		
Rabbit, European Rabbit [128]		Species or species habitat likely to occur within area
Rattus rattus		
Black Rat, Ship Rat [84]		Species or species habitat likely to occur within area
Sus scrofa		
Pig [6]		Species or species habitat

Vulpes vulpes Red Fox, Fox [18]

Species or species habitat likely to occur within area

likely to occur within area

Plants

Acacia nilotica subsp. indica Prickly Acacia [6196]

Cryptostegia grandiflora Rubber Vine, Rubbervine, India Rubber Vine, India Rubbervine, Palay Rubbervine, Purple Allamanda [18913]

Hymenachne amplexicaulis

Hymenachne, Olive Hymenachne, Water Stargrass, West Indian Grass, West Indian Marsh Grass [31754]

Jatropha gossypifolia

Cotton-leaved Physic-Nut, Bellyache Bush, Cotton-leaf Physic Nut, Cotton-leaf Jatropha, Black Physic Nut [7507]

Lantana camara

Lantana, Common Lantana, Kamara Lantana, Largeleaf Lantana, Pink Flowered Lantana, Red Flowered Lantana, Red-Flowered Sage, White Sage, Wild Sage [10892]

Parkinsonia aculeata

Parkinsonia, Jerusalem Thorn, Jelly Bean Tree,

Species or species habitat may occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species

Name	Status	Type of Presence
Horse Bean [12301]		habitat likely to occur within area
Parthenium hysterophorus		
Parthenium Weed, Bitter Weed, Carrot Grass, False Ragweed [19566]		Species or species habitat likely to occur within area
Salvinia molesta		
Salvinia, Giant Salvinia, Aquarium Watermoss, Kariba Weed [13665]	1	Species or species habitat likely to occur within area
Vachellia nilotica		
Prickly Acacia, Blackthorn, Prickly Mimosa, Black Piquant, Babul [84351]		Species or species habitat likely to occur within area
Nationally Important Wetlands		[Resource Information]
Name		State

QLD

QLD

QLD

QLD

QLD

Bowen River: Birralee - Pelican Creek

Lake Dalrymple

Burdekin-Bowen Junction and Blue Valley Weir Aggregation

Rollston River and Molly Darling Creek Aggregation

Turkey Mound Spring and Iron Pot Spring Aggregation

Caveat

The information presented in this report has been provided by a range of data sources as acknowledged at the end of the report.

This report is designed to assist in identifying the locations of places which may be relevant in determining obligations under the Environment Protection and Biodiversity Conservation Act 1999. It holds mapped locations of World and National Heritage properties, Wetlands of International and National Importance, Commonwealth and State/Territory reserves, listed threatened, migratory and marine species and listed threatened ecological communities. Mapping of Commonwealth land is not complete at this stage. Maps have been collated from a range of sources at various resolutions.

Not all species listed under the EPBC Act have been mapped (see below) and therefore a report is a general guide only. Where available data supports mapping, the type of presence that can be determined from the data is indicated in general terms. People using this information in making a referral may need to consider the qualifications below and may need to seek and consider other information sources.

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species distributions have been derived through a variety of methods. Where distributions are well known and if time permits, maps are derived using either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc) together with point locations and described habitat; or environmental modelling (MAXENT or BIOCLIM habitat modelling) using point locations and environmental data layers.

Where very little information is available for species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc). In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More reliable distribution mapping methods are used to update these distributions as time permits.

Only selected species covered by the following provisions of the EPBC Act have been mapped:

- migratory and
- marine

The following species and ecological communities have not been mapped and do not appear in reports produced from this database:

- threatened species listed as extinct or considered as vagrants
- some species and ecological communities that have only recently been listed
- some terrestrial species that overfly the Commonwealth marine area
- migratory species that are very widespread, vagrant, or only occur in small numbers

The following groups have been mapped, but may not cover the complete distribution of the species:

- non-threatened seabirds which have only been mapped for recorded breeding sites
- seals which have only been mapped for breeding sites near the Australian continent

Such breeding sites may be important for the protection of the Commonwealth Marine environment.

Coordinates

-20.22606 146.354, -20.22606 147.74652, -21.03317 147.74652, -21.03317 146.354, -20.22606 146.354

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program

-Australian Institute of Marine Science

-Reef Life Survey Australia

-American Museum of Natural History

-Queen Victoria Museum and Art Gallery, Inveresk, Tasmania

-Tasmanian Museum and Art Gallery, Hobart, Tasmania

-Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.

© Commonwealth of Australia Department of the Environment GPO Box 787 Canberra ACT 2601 Australia +61 2 6274 1111

Appendix B Hydrobiology (2018) Fish Passage Report

BRISBANE | PERTH | PAPUA NEW GUINEA

Lee Benson EM (Ecology Management) Pty Ltd 8 May 2018

OPINION: NATURAL FISH PASSAGE AT BURDEKIN FALLS

Dear Lee,

As requested, this letter provides a professional opinion on the extent of natural fish passage past the Burdekin Falls before construction of the current dam and Lake Dalrymple. This extent of such natural fish passage is relevant to considerations of the need to provision of fish passage past the dam. My opinion is based on the following:

- A brief literature review by Dare Lawrence and Garry Ogston of Hydrobiology to provide me with background information on the fishes of the catchment and their known natural and current distributions, including the previous considerations by Pusey on the need for fish passage (provided to me by you);
- A review of known genetic similarities between the Burdekin fish populations above and below the Falls, and in adjacent catchments supplied to me by Dr Peter Unmack of the University of Canberra; and
- Consideration of the geomorphology and river flow regime of the Falls.

In addition to the above sources, I have undertaken a limited literature review myself, and have some personal knowledge of the Falls before the construction of the dam, based on occasional fishing trips to the Falls when I lived in Townsville in the early 1980s.

FISH SPECIES DISTRIBUTIONS

The literature review of by Lawrence and Ogston is provided in Appendix 1. It is noted in that review, and in correspondence from you that Pusey, in ACTFR (1999) stated that:

"The impact of raising the BFD on fish passage is not an issue, unlike in other proposed developments, given that the Falls have historically been a barrier to fish movement (Pusey *et al.* 1998). The only species likely to be impacted would be the long-finned eel, which is largely already extinct in the upper Burdekin River because of the construction of the existing dam. Care would be needed to ensure that fish movements from the lower reaches to the confluence of the Bowen River are maintained."

This statement, while seemingly justifying the current lack of a fish passage mechanism on the dam, noted that at least one catadromous species (fish species that are resident in fresh water as adults, but migrate to sea to breed), the long-finned eel *Anguilla reinhardtii*, was able to naturally negotiate the Falls before the

27 / 43 Lang Parade Auchenflower 4066 QUEENSLAND

Toowong 4066 QUEENSLAND

+61 (0)7 3721 0100 P +61 (0)7 3721 0151 F info@hydrobiology.biz

dam was built. The cause of the extinction of the upper Burdekin population is not clear, and it is not known how much Clare Weir may have contributed to its demise before a fish passage structure was fitted to it, but the fact that eels were once able to migrate upstream past the Falls shows that at least one species certainly did so.

No other catadromous species were able to migrate through the Falls. Barramundi *Lates calcarifer* are now regularly stocked into Lake Dalrymple, and it may be possible that under favourable high flow conditions some of these may manage to swim over the spillway and survive to migrate to sea to spawn (see discussion below regarding downstream migration).

Burrows et al. (2009) referenced Burrows (2001) to indicate that snakehead gudgeon Giurus margaritacea, generally regarded as likely to have a marine larval stage (e.g. see Allen et al. 2002) had been recorded from a site in the Cape River, above Burdekin Falls. That reference proved difficult to locate, but a copy that included the data appendix was sourced from Damien Burrows, of TropWater. The sampling was conducted in 2000 by Tim Marsden, then of the Department of Primary Industries, and included a record of a single snakehead from the Cape River site by backpack elecrofishing. No other reports found in the literature for this assessment have been found to have referenced that specimen, including other reports by authors with access to the dataset of Burrows (2001) including Pusey (2004) did not include that species in the list of known species for the upper catchment. Even though recorded by a well credentialed worker, this single species does not necessarily confirm the presence of that species above the Falls, as there is no indication the specimen was lodged with a museum or otherwise stored in a verifiable form, nor that if that specimen was confirmed that it had migrated above the Falls. For example, while uncommon, snakeheads are an attractively coloured species, and are sometimes kept as aquarium specimens by amateur collectors. It is probable that that specimen had been translocated to the upper catchment, and certainly more probably than that it had managed to pass the Burdekin Falls Dam or managed to persist since construction of the dam, but the possibility that it had managed to migrate to that location cannot be completely discounted. Note that the lifespan of this species is not known, nor was the size or age of the specimen recorded by Marsden. This very uncertain record is the only recording of a species other than the longfinned eel with a marine life history phase from above the Falls in any report accessed.

Of the approximately 40 species of freshwater fishes in the Burdekin catchment, the following are known to have had natural populations upstream and downstream of the Falls:

SPECIES WITH NO AVAILABLE GENETIC INFORMATION

- **Bony bream** *Nematalosa erebi*, which is widespread in most inland waters in Australia. Exactly how this species, which is notoriously difficult to handle and translocate, has managed to achieve such a wide distribution is not known. However, it indicates a ready capacity to disperse, and the presence of populations in adjacent catchments could readily have contributed to maintenance of the upper Burdekin population.
- **Soft-spined catfish** *Neosilurus mollespiculum* is endemic to the Burdekin catchment. It is one of two endemic species, the other being smallhead grunter (see below). That both had natural populations above and below the Falls without further speciation suggests that they may have been able to move at least downstream past the Falls, but this has so far not been confirmed by genetic studies.
- **Narrowfront tandan** *Neosilurus ater*, a widespread species across northern Australia and southern New Guinea that could have maintained populations in the upper Burdekin via exchange with adjacent catchments that support this species.

- **Hyrtl's tandan** *Neosilurus hyrtlii,* which is another widespread species in northern Australia and southern New Guinea.
- Rendahl's tandan Porochilus rendahli, which is another widespread eel-tailed catfish in northern Australia
- **Spotted archerfish** *Toxotes chatareus* is again widespread in northern Australia and southern New Guinea, and while normally restricted to below natural passage barriers, may have been maintained in the upper Burdekin by exchange with adjacent catchments.
- **Spangled perch** *Leiopotherapon unicolor* which occurs across northern Australia and has the ability to disperse readily between catchments across shallow catchment divides via surface flow during heavy rainfall (see Beumer 1976).
- **Banded grunter** *Amniataba percoides* which is similarly widespread in northern Australia, although with less southward extension than for spangled perch.
- **Sooty grunter** *Hephaestus fuliginosus* was also naturally widespread across north-east Australia but has also been widely stocked as a recreational fishing species. Unmack (Appendix 2) suggests that the history of stocking in the Burdekin catchment may make unravelling the natural population genetic relationships impossible to determine. From personal experience and more recent reports of fishermen it is clear that specimens of this species resided within the Falls during the dry season and were and are a target for fishers. This demonstrates that the species is able to at least partially ascend the Falls.
- **Smallhead grunter** *Scortum parviceps* is the other endemic species to the system, which was also resident above and below the Falls naturally. It is also a target of recreational fishers within the Falls, indicating an ability to at least partially negotiate the Falls (note that in online fishing forums it does not seem to be reliably separated from sooty grunter by anglers). Again, this is suggestive of at least downstream gene flow to maintain the two populations historically and the ability of the species to at least partially negotiate the falls complex.

SPECIES WITH GENETIC INFORMATION

- **Long-finned eel** *Anguilla reinhardtii* is a single genetic stock in Australia, southern New Guinea, the Solomon Islands and New Zealand, all breeding in the Coral Sea gyre. The historic population upstream of the Falls could only have been maintained by upstream migration.
- **Fly-specked hardyhead** *Craterocephalus stercusmuscarum* which Unmack (Appendix 2) notes from a very small dataset appeared to have generally similar genetics between the upper and lower populations, but with the upper population having some similarities with the Cooper Creek catchment population.
- **Agassiz's glassfish** *Ambassis agassizii* has complex genetics in the Burdekin but with a general distinction between upper populations being closely related to other inland drainages and the lower population being more closely related to other coastal drainages.
- **Eastern rainbowfish** *Melanotaenia splendida* which has complex genetics in the system and a cryptic Running River species that is yet to be described. There is considerable genetic overlap between the Burdekin populations and the populations of adjacent inland and coastal catchments, but with some distinction between the upper and lower populations within the Burdekin catchment

Midgley's gudgeon *Hypseleotris* sp. Midgley, which has distinct genetic differences between the upper and lower catchment populations.

Figure 1 shows the relationship of the Burdekin catchment with the adjacent catchments discussed above with respect to apparent gene flow.

Unmack (in Appendix 2) provided some indicative timescales for genetic divergence for a number of these species. The only species with clearly recent gene flow between the upper and lower catchment populations was for the eastern rainbowfish, but the available genetic data are very limited and so definitive statements are not possible with the current evidence. Note that with the limited data and uncertainty of genetic clocks for Australian freshwater fishes, any indicated isolation of less than or equal to around 100,000 y should be considered recent genetic mixing.

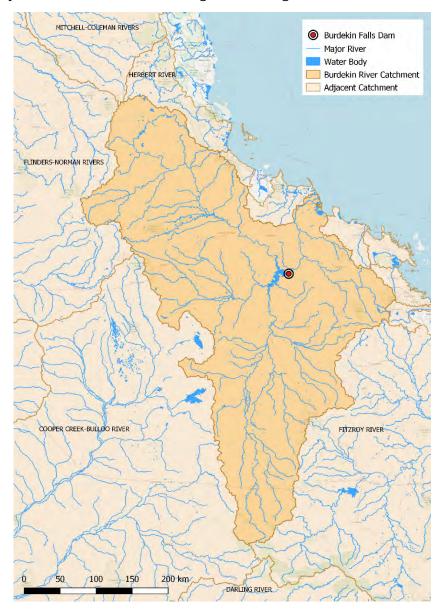


Figure 1 Burdekin River catchment relationship to adjacent catchments

GEOMORPHOLOGY AND HYDROLOGY – POTENTIAL FOR FISH PASSAGE

The Burdekin Falls were not a single vertical waterfall, but a series of short falls, cascades and incised channels within an expanse of exposed rock within a wide gorge as shown in Figure 2. At low flows (a dam release is occurring in Figure 2 as an example), upstream migration would generally have been prevented by a series of small falls. That some species could be caught by anglers within the Falls before dam construction indicates that at least the downstream rapids to the right in Figure 2 were able to be traversed at some flow stages. The current dam was built at the crest of the Falls, above any substantial natural barriers (Figure 3), and so post-construction images largely show the natural flow patterns over the Falls, except for enhanced turbulence caused by the spillway and dissipation structures (Figure 4). Hence, the images in Figure 5 provide useful views on the nature of flood flows through the Falls area. Clearly the major flow steps shown in Figure 2 are drowned out in flood flows, and potential fish pathways without obvious vertical drops, and limited turbulence can be seen, particularly towards the right bank (away from the low-flow channel) and very close to the left bank. In very high flows, it is likely current velocities may have prevented any upstream migration of fishes because all flow is restricted to within the wider gorge, but it is possible that some fishes may have been able to migrate upstream during lesser flood flows. It is also evident that there would have been a number of pathways for fish to successfully migrate downstream during flood flows.



Figure 2 Burdekin Falls in October 2017 from GoogleEarth

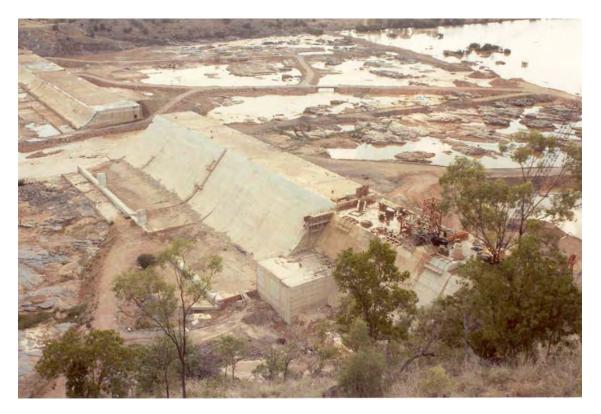


Figure 3 Burdekin Falls Dam during construction.

Figure 4 Burdekin Falls Dam spillway during flood flow

Figure 5 the Burdekin Falls during bankfull flood flows.

DISCUSSION

The nature of the Burdekin Falls, the drowning out of low-flow vertical falls evident in images of flood flows over them, and the persistence of fish populations within the channels of the Falls during the dry season are all consistent with some species being able to migrate downstream at least during flood flows, and that some fishes, other than eels, may have been able to migrate upstream during some flood flows. This is consistent with the natural fish species distributions and the available genetic data. Some species were certainly unable to negotiate the Falls, and some other species seem to have diverged somewhat genetically between upstream and downstream populations. However, at least eastern rainbowfish do seem to have maintained genetic similarity between the upstream and downstream populations. For this small bodied species, this may have only been via downstream movement. Unfortunately, there are no genetic data available for the two endemic species, soft-spined catfish and smallhead grunter, but both were able to maintain both upper catchment and lower catchment populations, despite being unable to obtain even occasional recruits from adjacent catchments. The distribution patterns of these species alone are strongly indicative of at least downstream movement past the Falls. The only certain evidence for upstream migration was the historic distribution of long-finned eels, the uncertain record of snakehad gudgeon from the Cape River notwithstanding. Nonetheless, it is is certain that one species at least was able to naturally maintain an upper catchment population via upstream migration past the Falls.

It is also clear that the Falls were a natural passage barrier for most fishes and at most allowed for limited fish movement.

OPINION

In my opinion, the available evidence, while unfortunately limited, is sufficient to demonstrate that there was natural fish migration through the Burdekin Falls before construction of the dam. It was of a limited nature, but historically maintained a population of one catadromous species above the Falls, and facilitated the persistence of both endemic species above and below the Falls.

The apparently limited extent of that movement does not justify the expense of fitting a fish passage structure to the existing dam, or indeed to any further raised structure. I note that you have indicated that the cost for such a structure would potentially be tens of millions of dollars to fit to the structure. However, consideration should be given to some reestablishment of gene flow between the upstream and downstream populations of the species with upper and lower catchment populations that are not confirmed to have genetic distinctions indicating more than around 100,000 years of isolation.

As a number of species with upper and lower catchment populations have not been subject to genetic study at the necessary resolution, particularly the two endemic species, I recommend that the genetic similarities of the upper and lower catchment populations of these species be examined before any plans to facilitate such gene flow be further developed.

The natural restriction of fish movement past the Falls may require only limited translocation of specimens of the appropriate species to simulate the amount of natural gene flow before the construction of weirs and dams on the Burdekin River. As most of the species that do have natural populations above and below the Falls are riverine species, not lacustrine, it would be advisable that any such translocations should be into river reaches, not into the waters of Lake Dalrymple, to maximise the survival of the translocated specimens. The design of such a translocation strategy is difficult at present, but would be better informed if further genetic studies were undertaken to provide a better estimate of the extent of

geneflow, and hence the numbers of fishes that would need to be translocated to simulate that historic gene flow. A scope of work for such a study can be developed at your request.

Sincerely

8

Dr Ross Smith Director Hydrobiology

REFERENCES

Allen G.R., Midgley, S.H. and Allen M. (2002) *Field Guide to the Freshwater Fishes of Australia.* Western Australian Museum, Perth

Australian Centre for Tropical Freshwater Research (ACTFR) (1999) *An initial environmental assessment of water infrastructure Options in the Burdekin Catchment* – Final Report to Department of Natural Resources – Regional Infrastructure Development Program North Region. Queensland.

Beumer J.P. (1976) *The fishes of a tropical river with emphasis on the spangled perch, <u>Therapon unicolor</u> <i>Gunther, 1859, and the east Queensland rainbowfish, <u>Nematocentris splendida</u> Peters, 1866. James Cook University, North Queensland.*

Burrows D. (2001) *Monitoring of Riparian Environments in the Dalrymple Shire With Respect to the Benefits of Fencing. Year 2 Report to Dalrymple Shire Council.* ACTFR (Australian Centre for Tropical Freshwater Research, Townsville.

Burrows D., Davis A. & Knott M. (2009) *Survey of the freshwater fishes of the Belyando-Suttor System, Burdekin Catchment, Queensland*. ACTFR (Australian Centre for Tropical Freshwater Research, Townsville.

Pusey B.J. (2004) *Appendix H. Freshwater Fish of the Burdekin River and Associated Drainages: Biodiversity, Distribution, Flow-related Ecology.* In Environmental Conditions Report. Burdekin Basin Draft Water Resource Plan (WRP). QLD Dept. Natural Resources and Mines.

Pusey. B. J., Arthington. A. H., Stewart-Koster. B., Kennard. M. J. & Read. M. G. (2010). *Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australia river*. Journal of Fish Biology 77: 731-753

APPENDIX 1 – LITERATURE REVIEW

1.THE BURDEKIN FALLS DAM

The Burdekin Falls Dam is a mass concrete gravity dam with one uncontrolled spillway. It was completed in 1987 becoming the largest dam in the state (Table 1). It lies within the Burdekin Central Queensland drainage basin (Figure 1) and is a crucial part of water supply to surrounding regions. It operates in conjunction with the Clare and Gorge weirs on the Burdekin River and Val Bird and Giru weirs on the Haughton River making it a key asset in the Burdekin Haughton Water Supply Scheme (Shannon, 1987).

To date it supplies water for irrigation, industrial allotments and urban centres including Townsville. Due to population growth it has several proposed projects such as a dam raising, main channel augmentation and a hydro-electricity power station.

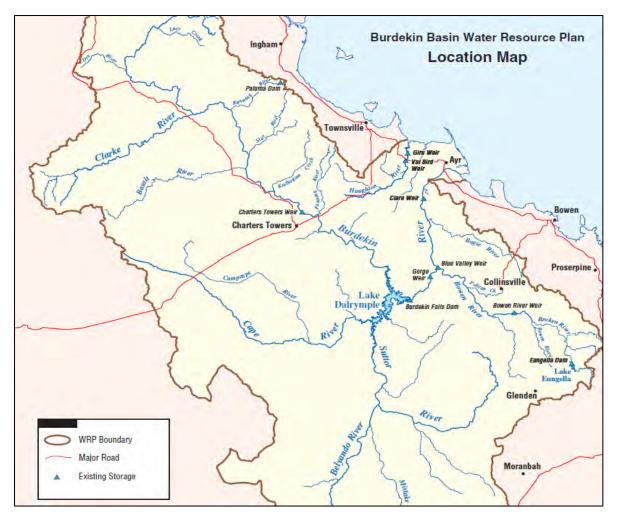


Figure 1 Map of all major water systems in the Burdekin drainage basin including all relevant dams and weirs.

Characteristic	Description
Storage capacity	1,860,000 ML
Full supply level	154m AHD
Catchment area	114, 200km²
Height x length	55m x 876m

1.1 RIVER SYSTEM

1.1.1 WQ

A study by Pusey (1998) surveying both upstream and downstream sites found that between-site group differences in water quality were not pronounced. Water temperatures were always above 20 °C, peaking at 31.3 °C during

November of 1989 (2 years after completion of the dam). A further study by the same author in 2004 found similar maximum temperature readings but an increased minimum of 27 °C. Dissolved oxygen never dropped below 4.51mg O₂. I⁻¹ and was often above 5. pH was always between 7 and 8.4 with conductivity ranging between 250 and 600 μ S.cm⁻¹, decreasing downstream. Most sites had water depth under 2m with a low flow rate.

1.1.2 HABITAT/ FOOD

Pusey et al (1998) found that habitat structure was not greatly different over the sites. Sand and fine gravel were the dominant substrate throughout the catchment, adjacent rivers and tributaries. The Burdekin River is known to have coarser substrate, a deeper maximum depth and a higher flow rate upstream of Lake Dalrymple.

The dominant available food sources include invertebrates and algae (in low flow areas) with macrophytes dependant on season and water depth.

1.2 NATURAL BARRIER

Burdekin Falls historically functioned as a natural fish passage barrier to at least some species. Burdekin Falls has had an overriding influence on the distribution of the fish within the drainage (Pusey et al. 1998). Most species with a marine constituent to their ontology have been naturally successfully excluded from the upstream reaches due to the impassable barrier posed by the falls.

Pusey (in ACTFR 1999) stated; "The impact of raising the BFD on fish passage is not an issue, unlike in other proposed developments, given that the Falls have historically been a barrier to fish movement" The only species likely to be obstructed would be the long-finned eel, which is largely already extinct in the upper Burdekin River due to the construction of the existing dam (Pusey et al. 1998).

Care would be needed to ensure that fish movements from the lower reaches to the confluence of the Bowen River are maintained as it is often the small bottom-feeders that are affected by fish barriers (Knaepkens et al. 2007). The latter refers to the impacts of other barriers downstream of this confluence, particularly Clare Weir but this weir is now fitted with a fish transfer device. It is the only weir within the BHWSS to have a fishway. It is worth noting that Clare Weir is a crucial fishway for species that migrate to and from the Bowen River and tributaries

1.2.1 FISH DISTRIBUTIONS

Pusey et al. (1998) found that by national standards, the number of species present was low given the size of the catchment with the other smaller QLD rivers playing host to over 40 species.

A study by ATCFR (1999) found a total of 37 fish species (18 being native) in the freshwaters of the Burdekin river. Having said that 2 of those have never been recorded, their presence is simply hypothesized (*Hypseleoptris galii*, *Glossogobius* sp). Misidentification may be responsible for these inclusions.

Compiling studies by Pusey et al. (1998), Pusey et al. (2006) and Pusey et al. (2010) and the review by Unmack (Appendix 2 of this report) found a total of 40 fish species, belonging to 22 families (Table 2). Most surveyed species had insects (terrestrial or aquatic) as a part of their diet, the other major component being algae. Few recorded species were piscivorous with a select few consuming molluscs (mostly Plotosidae) and plankton. (e.g. Ambassidae, Pseudomugilidae)

2.DISTRIBUTION UPSTREAM AND DOWNSTREAM OF BFD

Before the construction of the dam, the Burdekin Falls was a natural passage barrier that hindered the colonisation of upstream habitats. Only *Anguilla reinhardtii* (Anguillidae) and possibly *Giurus margaritacea* (Eleotridae) (see main report body) have been recorded to have necessarily navigated upstream (Table 4).

Whilst many of the recorded fish species require upstream migrations to complete life cycles or for foraging, many in the lower Burdekin are able to use the Clare Weir fishway to reach the Bowen River and its tributaries.

2.1 INTRODUCED/ TRANSLOCATED SPECIES

Several fish species have been translocated to the Burdekin River and surrounding catchments, potentially since the early 1800s beginning with *Oxyeleotris lineolatus* (Eleotridae), which is suspected may have been translocated into the lower Burdekin around that time, but may have been native. The most heavily stocked species in recent years has been *Lates calcarifer* with a total of over 600,000 individuals introduced, primarily to Lake Dalrymple, to date (table 3).

Table 2 Recorded species in Burdekin river and surrounding waterways upstream and downstream of the Burdekin Falls dam. Table includes their relative abundance, diet, origin and status. Abundance was determined relative to catch rates over the various surveys conducted over time.

common name	species	family	diet	state	upper reaches	lower reaches	IUCN Red list status
long finned eel	Anguilla reinhardtii	Anguillidae	algivore / invertivore	native	х	х	not evaluated
pacific short finned eel	Anguilla obscura	Anguillidae	invertivore	native		x	not evaluated
mouth almighty	Glossamia aprion	Apogonidae	algivore / invertivore	native		х	not evaluated
fork tailed catfish	Neoarius graeffei	Ariidae	algivore / invertivore	native		х	not evaluated
fly-specked hardyhead	Craterocephalus stercusmuscarum	Atherinidae	planktivore / invertivore	native	х	х	not evaluated
Marjorie's hardyhead	Craterocephalus marjoriae	Atherinidae	algivore / invertivore	native	x		not evaluated
freshwater longtom	Strongylura krefftii	Belonidae	piscivore	native		x	not evaluated
Agassiz's glassfish	Ambassis agassizii	Chandidae	planktivore / invertivore	native	х	x	not evaluated
bony bream	Nematalosa erebi	Clupeidae	detritivore	native	x	x	least concern
western carp gudgeon	Hypseleotris klunzingeri	Eleotridae	planktivore / invertivore	native / translocated	х		not evaluated
flathead gudgeon	Phylipnodon grandiceps	Eleotridae	molluscivore / invertivore	native / translocated	х		not evaluated
purple-spotted gudgeon	Mogurnda adspersa	Eleotridae	molluscivore / invertivore	native		х	not evaluated
sleepy cod	Oxyeleotris lineolatus	Eleotridae	invertivore	Native / translocated	х	х	not evaluated
empire gudgeon	Hypseleotris compressa	Eleotridae	algivore / invertivore	native		х	not evaluated
flatheaded goby	Glossogobius giurus	Gobiidae	invertivore	native		x	least concern
snub-nosed garfish	Arramphus sclerolepis	Hemiramphidae	algivore / invertivore	native		x	not evaluated
barramundi	Lates calcarifer	Centropomidae	piscivore / invertivore	translocated	x	х	not evaluated
tarpon	Megalops cyprinoides	Megalopidae	piscivore / invertivore	native		х	not evaluated

common name	species	family	diet	state	upper reaches	lower reaches	IUCN Red list status
eastern rainbowfish	Melanotaenia splendida	Melanotaeniidae	algivore / invertivore	native	х	х	not evaluated
yellowbelly	Macquaria ambigua	Percichthyidae	piscivore / invertivore	translocated	x		not evaluated
Murray cod	Maccullochella peeli	Percichthyidae	piscivore / invertivore	translocated	х		critically endangered
soft-spined catfish	Neosilurus mollespiculum	Plotosidae	molluscivore / invertivore	native	х	х	not evaluated
Hyrtl's tandan	Neosilurus hyrtlii	Plotosidae	molluscivore / invertivore	native	x	x	not evaluated
narrow-fronted tandan	Neosilurus ater	Plotosidae	molluscivore / invertivore	native	х	х	not evaluated
Rendahl's catfish	Porochilus rendahli	Plotosidae	invertivore	native	x	x	not evaluated
eel-tailed catfish	Tandanus tandanus	Plotosidae	invertivore / detritivore	native / translocated	х	x	not evaluated
eastern gambusia	Gambusia holbrooki	Poeciliidae	algivore / invertivore	exotic		x	least concern
pacific blue eye	Pseudomugil signifer	Pseudomugilidae	planktivore / invertivore	native		х	not evaluated
bullrout	Notesthes robusta	Scorpaenidae	invertivore	native		x	not evaluated
silver perch	Bidyanus bidyanus	Terapontidae	algivore / invertivore	translocated	х		vulnerable
small headed grunter	Scortum parviceps	Terapontidae	algivore / invertivore	native	x	x	not evaluated
spangled perch	Leiopotherapon unicolor	Terapontidae	algivore / invertivore	native	х	х	not evaluated
banded grunter	Amniataba percoides	Terapontidae	algivore / invertivore	native / translocated	х	х	not evaluated
sooty grunter	Hephaestus fuliginosus	Terapontidae	algivore / invertivore	stocked	x	х	not evaluated
seven spot archerfish	Toxotes chatereus	Toxotidae	invertivore	native	x	х	not evaluated
snakehead gudgeon	Giurus margaritacea	Eleotridae	invertivore / detritivore	native	х	х	least concern
Running River	Melanotaenia sp.	Melanotaeniidae	algivore / invertivore	native	x		not evaluated
Midgely's carp gudgeon	Hypseleotris sp.	Eleotridae	invertivore	native	х	x	not evaluated

common name	species	family	diet	state	upper reaches	lower reaches	IUCN Red list status
Burdekin mogurnda	Mogurnda sp. "burdekin"	Eleotridae	invertivore	native	х		not evaluated
Flinders Ranges mogurnda	Mogurnda clivicola	Eleotridae	Invertivore	Native	Х		not evaluated

Table 3 Recorded exotic and translocated species in Burdekin River and surrounding waterways upstream and downstream of the Burdekin Falls dam. Pale orange shading indicates translocated, bright orange shading indicates exotic to Australia and green shading indicates uncertain whether translocated or native to this part of the catchment.

common name	species	family	diet	state	upper	lower
western carp gudgeon	Hypseleotris klunzingeri	Eleotridae	planktivore / invertivore	native / translocated	х	
flathead gudgeon	Phylipnodon grandiceps	Eleotridae	molluscivore / invertivore	native / translocated	x	
sleepy cod	Oxyeleotris lineolatus	Eleotrididae	invertivore	translocated	x	х
barramundi	Lates calcarifer	Latidae	piscivore / invertivore	translocated	x	х
yellowbelly	Macquaria ambigua	Percichthyidae	piscivore / invertivore	translocated	x	
murray cod	Maccullochella peeli	Percichthyidae	piscivore / invertivore	translocated	x	
eastern mosquitofish	Gambusia holbrooki	Poeciliidae	algivore / invertivore	exotic		х
silver perch	Bidyanus bidyanus	Terpontidae	algivore / invertivore	translocated	x	
sooty grunter	Hephaestus fuliginosus	Therapontidae	algivore / invertivore	translocated	X	х

Table 4. Recorded species in Burdekin river and surrounding waterways upstream and downstream of the Burdekin Falls dam by presence in each zone or both. Table includes known movement patterns and any relevant notes that are largely generic (i.e. not specific to the Burdekin catchment) and largely taken from the species descriptions of Pusey *et al.* (2004). Yellow shading indicates persistence in this area is uncertain. Orange shading indicates translocated to that area, green shading indicates endemic to the catchment and red shading indicates exotic to Australia.

		obse	rved		
species	family	upper	lower	movement	notes
Above and Below Falls					
Anguilla reinhardtii	Anguillidae	х	х	Catadromous, spawning in the Coral Sea	Declining numbers upstream
Craterocephalus stercusmuscarum	Atherinidae	х	х	Short-range movements most likely	Uncommon in more turbid areas. Upstream recolonisation when elevated discharge cues
Ambassis agassizii	Chandidae	х	х	Limited although observed to recolonise newly inundated reaches	
Nematalosa erebi	Clupeidae	х	х	Unknown but make substantial movements	All fish present in upper were also present in upper tributaries
Oxyeleotris lineolatus	Eleotridae	х	х	Juveniles disperse from the natal habitat. Upstream movements by adults during warmer months	Present in lower catchment prior to 1976 likely due to translocation in 1880s, absent from tributaries
Melanotaenia splendida	Melanotaenidae	х	х	Unknown, little gene flow whilst lowland populations probably use floodplains	Small-bodied species unable to move readily upstream or downstream in high currents
Neosilurus mollespiculum	Plotosidae	х	х	Makes mass upstream movements during high flow events	Few in lower reaches. Appears dependant on access to tributaries
Neosilurus hyrtlii	Plotosidae	х	х	Makes mass upstream movements during high flow events	
Neosilurus ater	Plotosidae	х	х	Makes mass upstream movements during high flow events	Presence upstream likely due to translocation
Porochilus rendahli	Plotosidae	х	х	Known to migrate to lowland muddy areas for spawning in some catchments	
Tandanus tandanus	Plotosidae	х	х	Unknown	Has been observed to be able to use fishways
Leiopotherapon unicolor	Therapontidae	х	х	Upstream migrations made by juveniles and subadults and able to disperse through overland flow	Floods important for dispersal
Amniataba percoides	Therapontidae	х	х	Upstream migrations made by juveniles and subadults	Has been stocked in upper catchments of Burdekin drainage basin and elsewhere in QLD
Hephaestus fuliginosus	Therapontidae	х	х	Upstream and downstream migrations to areas of suitable habitat, including tributaries	
Scortum parviceps	Therapontidae	х	х	Unknown	Mostly only found in fresh waters, does not tolerate higher salinities well
Toxotes chatereus	Toxotidae	х	х	Unknown	
Giurus margaritacea	Eleotridae	х	х	Movement upstream to spawning grounds and generally considered to have a marine larval phase	Territorial adults may restrict invasion by subadults. Has been observed to negotiate Clare Weir
Hypseleotris sp.	Eleotridae	х	х	Juveniles transported downstream to estuarine environments, followed by upstream movement by juveniles	
Lates calcarifer	Centropomidae	x	х	Catadromous, seasonally migrates to estuarine and near shore areas to spawn	
Below Falls Only					
Anguilla obscura	Anguillidae		х	Catadromous, spawning in the Coral Sea	
Glossamia aprion	Apogonidae		х	Unknown	
Neorius graeffei	Ariidae		х	Generally breeds in freshwater but males commonly migrate to estuaries to brood young	
Strongylura krefftii	Belonidae		х	Unknown but likely to involve downstream movements by adults for spawning	Barriers to movement likely to impact on this species

			erved		
species	family	upper	lower	movement	
Glossogobius giurus	Gobiidae		х	Larvae require dispersal to marine environments and juveniles make return upstream	
Arramphus sclerolepis	Hemiramphidae		х	Unknown. Able to complete lifecycle in freshwater or brackish water	Had been noted far upstream in the low
Megalops cyprinoides	Megalopidae		х	Catadromous with adults and juvenile making upstream movements	
Gambusia holbrooki	Poeciliidae		x	Unknown	
Pseudomugil signifer	Pseudomugilidae		х	Probably limited, small-bodies species with patchy distribution within the catchment	Likely outcompeted by mosquitofish
Notesthes robusta	Scorpaenidae		х	Downstream movements in winter, upstream movements recorded from July to November	
Mogurnda adspersa	Eleotridae		х	Little recorded movement but is a widespread species	
Hypseleotris compressa	Eleotridae		х	Juveniles transported downstream to estuarine environments, upstream movement by juveniles	
Above Falls Only					
Craterocephalus marjoriae	Atherinidae	х		Limited	Has not been observed to use fishways
Hypseleotris klunzingeri	Eleotridae	х		Unknown, have been observed to use fishways	Possible confusion with juvenile <i>H. com</i> catchment
Phylipnodon grandiceps	Eleotridae	х		Unknown	Largely a freshwater species but has be
Macquaria ambigua	Percichthyidae	x		Upstream freshwater spawning migration	Population in the Burdekin due to esca
Maccullochella peeli	Percichthyidae	х		Little movement recorded with high fidelity to home snags and waterholes	Translocated a long time ago, but no lo
Bidyanus bidyanus	Terpontidae	х		Unknown	
Melanotaenia sp. Running River	Melanotaenidae	х		Little recorded movement	
<i>Mogurdna</i> sp. "burdekin"	Eleotridae	х		Little recorded movement	
Mogurnda clivicola	Eleotridae	х		Little recorded movement	

notes

lowland reached in past. Sleepy cod outcompeting it

ays or tidal barrages

ompressa in some collections. Likely to have been translocated into upper

been recorded from tidal waters

cape from aquaculture facility / translocation

longer stocked

3.CONCLUSION

- It is uncertain to what extent fish may have naturally migrated upstream or downstream past the Burdekin Falls, because of a lack of records of movement before the installation of the Clare Weir and the Burdekin Falls Dam.
- The natural distribution of fishes in the catchment is further obscured by a long history of poorly recorded fish translocations
- In any current assessment of historic, natural fish passage past the Falls in either direction, emphasis must be placed on genetic similarities between populations above and below the falls as an indicator of past gene flows. This is due to the substantial knowledge gaps in the available literature.

4.REFERENCES

Australian Centre Tropical Freshwater Research (1999) *An initial environmental assessment of water infrastructure Options in the Burdekin Catchment* – Final Report to Department of Natural Resources – Regional Infrastructure Development Program North Region. Queensland.

Knaepkens. G., Maerten. E. & Eens. M. (2007). *Performance of a pool-and-weirfish pass for small bottom-dwelling freshwater fish species in a regulated lowland river*. Animal Biology 57 (4): 423-432

Pusey. B. J., Arthington. A. H., Stewart-Koster. B., Kennard. M. J. & Read. M. G. (2010). *Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australia river*. Journal of Fish Biology 77: 731-753

Pusey. B. J., Burrows. D., Arthington. A. & Kennard, M. (2006). *Translocation and spread of piscivorous fishes in the Burdekin River, north-eastern Australia*. Biological invasions 8: 965-977

Pusey. B. J., Kennard. M. & Arthington, A.H. (2004). *Freshwater fishes of North-Eastern Australia*. Nathan: QLD. CSIRO Publishing.

Pusey. B. J., Arthington. A. H. & Read. M. G. (1998). Freshwater fishes of the Burdekin River, Australia: biogeography, history and spatial variation in community structure. Environmental Biology of Fishes 53: 303-318

Shannon. B. J. (1987). *Burdekin Falls dam*. International water power and dam construction 39 (12): 35-541

APPENDIX 2 – GENETIC REVIEW BY PETER UNMACK, CANBERRA UNIVERSITY

The Burdekin system has an unusually complex biogeographic history, guite likely due to the impact that Burdekin Falls had on the ease on which fish could move between the lower and upper reaches. Most river systems in Australia tend to have a single genetic type or closely related group of haplotypes. In a few cases multiple lineages within a species may be present within a river system, but this is generally rare and often limited to one or two species out of the total fish biota found within a river system. The Burdekin River stands out as one of the best examples where this is not the case. Of the species genetically examined from the lower vs upper reaches (separated by Burdekin Falls historically, but by the Burdekin Falls Dam today) almost all of them have differences. In some cases these are relatively small, in other cases larger genetic divergences are present. Part of this is due to mixing of the fish biota between adjacent river systems. The biota of the Cooper Creek drainage from the Lake Evre Basin have clearly mixed a lot with those of the Burdekin (especially the Belyando subbasin). In many cases it appears that these exchanges have been in both directions between these rivers. In other cases there have mixes from Gulf rivers (at least in Rainbowfishes) and with the Herbert River to the north. In most cases there are very "shallow" drainage divides, meaning with little elevational difference between the watersheds which could facilitate movement between river basins during especially wet period which allow fishes to disperse via overland flows. In contrast, much of the biota of the lower Burdekin is always closely related to populations from surrounding coastal river basins. Thus the upper system has been influenced by interactions with adjacent river basins across drainage divides while the lower system has mostly been influenced by connections between river basins with adjacent river mouths which would facilitate movement during low sea level periods or during major flooding of the relatively flat coastal plain.

It must be noted that most of these observations are based on fairly limited genetic data, meaning often only 2-5 populations have been examined, and often with only 2 individuals per population. Clearly more work is needed to solidify the patterns. However, in many cases the preliminary data tends to stand up to a reasonable extent, with greater sampling better able to detect the genetic mixing of populations that are closer to the barrier separating the upper and lower portions of the Burdekin system.

Here we provide a short species by species (or by groups of species) summary based on diadromous fishes, those restricted to the lower Burdekin and those found across the Burdekin system.

Diadromous (some obligate or facultative marine phase) species

These species have either obligate or facultative life history stages that use salt water environments as part of their life cycle. Only the long-finned eels have been found above Burdekin Falls, but they are well known to be able to easily pass barriers.

Anguilla obscura Anguilla reinhardtii Neoarius graeffei Arrhamphus sclerolepis Strongylura krefftii Megalops cyprinoides Lates calcarifer Giurus margaritacea Hypseleotris compressa Glossogobius giuris

Obligate freshwater species

Species found only below the Falls

At least 5 species appear to have only been native below Burdekin Falls

Tandanus tandanus

Recorded as being introduced in the Burdekin above Burdekin Falls, and it is unclear whether fish in the lower Burdekin are native or introduced.

Pseudomugil signifer

Only been recorded from the upper reaches of the Broken River near Eungella. This is a tributary of the Bowen River, which in turn is a tributary of the lower Burdekin River.

Glossamia aprion

Only one population from near Ayr has been examined. It was closely related to other nearby coastal populations.

Mogurnda adspersa

"True" *Mogurnda adspersa* have only genetically assessed from the upper reaches of the Broken River near Eungella [although a coastal population near Ayr is known to also exist]. Other *Mogurnda* populations are discussed below.

Oxyeleotris lineolata

Recorded as being introduced in the Burdekin above Burdekin Falls, unclear whether fish in the lower Burdekin are native or introduced.

Native species found above and below Burdekin Falls

Nematalosa erebi Neosilurus ater Neosilurus hyrtlii Neosilurus mollespiculum Porochilus rendahli Toxotes chatareus Amniataba percoides Hephaestus fuliginosus Leiopotherapon unicolor Scortum parviceps

Little if any information exists on genetic patterns in these species within the Burdekin system. For one, *Hephaestus fuliginosus* there have been multiple introductions which likely make determining their natural distinctiveness impossible.

Craterocephalus stercusmuscarum

We examined one population above and below Lake Dalrymple. These had slight difference between them, but were based on only a couple fish from each of two sites. The upper population was very closely related to fish from the Cooper Creek system.

Melanotaenia splendida Melanotaenia sp. "Running River" Rainbowfishes in the Burdekin system have very complex patterns with biogeographic connections and transfers between almost all surrounding river basins into the Burdekin system. Populations of *Melanotaenia splendida* near Ayr are related to nearby populations from other coastal rivers. Above Lake Dalrymple there are a series of distinct forms which we've referred to as the Running River Rainbowfish and the Burdekin Rainbowfish, with the former considered to be a different species, while Burdekin Rainbowfish represent a mix between Running River Rainbowfish and *M. splendida*. Most populations of rainbowfish above Lake Dalrymple have a mix of Running River types and *M. splendida*.

Ambassis agassizii

This species likely has quite complex patterns with the Burdekin system. Below Lake Dalrymple the one sampled population was related to other lowland populations to the north. Populations above appear to mixed between Lake Eyre Basin fish (e.g., Cooper Creek) and those from the Lower Burdekin.

Hypseleotris klunzingeri

Currently only known from Lake Dalrymple where it is common. That population is fairly closely related to the Fitzroy River populations. Based on the genetic results they tentatively appear to be native.

Hypseleotris sp. Midgley

Widespread and common throughout the Burdekin system. Two deeper lineages are present, plus two shallow lineages within one of the deeper lineages. The first deeper lineage contains animals from the lower Burdekin (near Ayr) which are most closely related to other surrounding coastal populations to the north and south. The second deeper lineage is found from Lake Dalrymple and upstream. Two shallow lineages are present, animals from the upper Belyando are closely related to those from the adjacent Cooper Creek system. The second shallow lineage is more closely related to animals from the Herbert River, these include animals from the Basalt and Keelbottom rivers. Of the two examined from Lake Dalrymple one had the "Cooper" lineage, the other had the "Herbert" lineage.

Mogurnda clivicola Mogurnda sp. "Burdekin"

We have examined a small number of animals from ~15 locations from above Burdekin Falls Dam. Fish from upper Belyando River were *M. clivicola*, otherwise only known from 3 disjunct populations within the Lake Eyre Basin (including the adjacent Cooper Creek). Most populations examined in Burdekin River and it's tributaries above Lake Dalrymple had a Burdekin specific endemic species with the exception of upper Running River near Paluma which had a fish related to nearby coastal populations of "*M. adspersa*" (the taxonomy of *M. adspersa* will change in the future as there are clearly several species within *M. adspersa*).

Divergence times

I've crudely estimated divergence times between populations from the lower vs upper Burdekin system based on their degree of genetic divergence, but these dates should not be taken literally, but in a relative manner. Essentially, if populations are the same, or only differ by one or two base pairs of mitochondrial data they are almost certainly had some gene flow within the last $\sim 100,000$ years, but if they differ by 1-2% sequence divergence then they are closer to the million year scale of separation.

Craterocephalus stercusmuscarum

Seven base pairs of divergence, thus ~200-400,000 years

Melanotaenia splendida Melanotaenia sp. "Running River"

Melanotaenia splendida has shared haplotypes above and below, thus there has been recent gene flow from downstream most likely, but some upstream rainbowfish populations have maintained distinctive populations and resisted gene flow from *M. splendida*. Difficult to age estimate as there has been past mixing (introgression).

Ambassis agassizii

Separate species are present, estimated at 2-4 million years divergence. But as noted above, some mixing has occurred, but difficult to estimate the timing/age of that mixing.

Hypseleotris klunzingeri

Only one base pair of divergence between Burdekin and Fitzroy populations, should be within the last 100,000 years.

Hypseleotris sp. Midgley

These are 1-2% divergent for cytochrome b (a mitochondrial gene) which would put their divergence at roughly 500,000 to a million years.

Mogurnda clivicola Mogurnda sp. "Burdekin"

We haven't sampled the same genes for *Mogurnda* as the other groups which makes age estimates a bit more difficult, plus we've only done limited mitochondrial DNA too. These are sister species, but both are substantially different to *M. adspersa*, at least a million or few million years of divergence.

Appendix C Macroinvertebrate Taxa List November-December 2018 and June 2019

		GROUP	Acarina	Araneae	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Branchiura	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Decapoda	Decapoda	Decapoda	Diptera	Diptera	Diptera	Diptera	Diptera	Diptera	Diptera	e Diptera	Diptera	Diptera	Diptera	Diptera	Ephemeroptera	Ephemeroptera	Ephemeroptera
SITE	НАВІТАТ	FAMILY	Acarina	Araneae	Bivalvia	Corbiculidae	Hyriidae	Sphaeriidae	Argulidae	Carabidae	Chrysomelidae	Curculionidae	Dytiscidae	Elmidae	Gyrinidae	Hydraenidae	Hydrochidae	Hydrophilidae	Limnichidae	Noteridae	Psephenidae	Scirtidae	Staphylinidae	Decapoda	Atyidae	Palaemonidae	Diptera	Ceratopogonidae	Chaoboridae	Chironomidae	s-f Chironominae	Culicidae	Ephydridae	s-f Orthocladiinae Diptera	Simuliidae	Tabanidae	s-f Tanypodinae	Tipulidae	Baetidae	Caenidae	Leptophlebiidae
June 201	19																																								
BUD2	EDGE		-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	-	√	√ ·	-
BUD2	BED		-	-	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	-	√ ·	-
UBR2	EDGE		-	-	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	\checkmark	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark	√ ·	-
UBR2	BED		-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	\checkmark	-	-	√	√ ·	-
UBR2	RIFFLE		\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	-	\checkmark	√ .	\checkmark
CAP2A	EDGE		-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark	-	-	√ ·	-
CAP2A	BED		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-	√ ·	-
CAP2A	RIFFLE		-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√ ·	-
LBR1A	EDGE		-	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-		-
LBR1A	BED		-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-	√ ·	-
GW	EDGE		-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark	-	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	\checkmark	√		-
GW	BED		-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-		-
GW	RIFFLE		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-		-
SEH2	EDGE		-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	-	√	√ ·	-
SEH2	BED		-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	\checkmark	\checkmark	-	-	√ ·	-
SEH2	RIFFLE		-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	\checkmark	√	√ ·	-
SEH1	EDGE		-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-		-
SEH1	BED		\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	\checkmark	\checkmark	-	-	\checkmark	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	√	√ ·	-
BUD3	EDGE		-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-		-
BUD3	BED		-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark		-
SUT1	EDGE		-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	\checkmark	-	-	-	-	\checkmark	-	√	√ ·	-
SUT1	BED		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	-	√		-
SUT2A	EDGE		\checkmark	\checkmark	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark	\checkmark	-	-	-	-	√	-	-	-	-	√	-	-	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark		-
SUT2A	BED		-	-	-	-	-	_	_	_	_	_	_	_	_	\checkmark	_	_	_	\checkmark	_	_	_	_	_	_	_	✓	\checkmark	_	\checkmark	-	_	√	_	_	√	_	\checkmark		_

Burdekin Falls Dam Raising Project: Aquatic Ecology Existing Environment

		GROUP	Acarina	Araneae	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Branchiura	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Coleoptera	Decapoda	Decapoda	Decapoda	Diptera	Diptera	Diptera	Diptera	Diptera	Diptera	Diptera	e Diptera	Diptera	Diptera	Diptera	Diptera	Ephemeroptera	Ephemeroptera	Ephemeroptera
SITE	НАВІТАТ	FAMILY	Acarina	Araneae	Bivalvia	Corbiculidae	Hyriidae	Sphaeriidae	Argulidae	Carabidae	Chrysomelidae	Curculionidae	Dytiscidae	Elmidae	Gyrinidae	Hydraenidae	Hydrochidae	Hydrophilidae	Limnichidae	Noteridae	Psephenidae	Scirtidae	Staphylinidae	Decapoda	Atyidae	Palaemonidae	Diptera	Ceratopogonidae	Chaoboridae	Chironomidae	s-f Chironominae	Culicidae	Ephydridae	s-f Orthocladiinae	Simuliidae	Tabanidae	s-f Tanypodinae	Tipulidae	Baetidae	Caenidae	Leptophlebiidae
Novemb	per-Decemb	oer 201	8																						-																
BUD2	Edge		\checkmark	-	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	√	-	_	\checkmark	-	-	-	-	\checkmark	\checkmark	-	-	-	-
BUD1	Edge		\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-	_	\checkmark	-	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	-
BUD1	Macrop hyte		√	-	√	\checkmark	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	√	-	-	√	-	-	√	-	-	√	-	-	√	-

Table C.2Macroinvertebrate Taxa List November-December 2018 and June 2019 (cont.).

SITE	НАВІТАТ	FAMILY GROUP	Ancylidae Gastropoda	Bithyniidae Gastropoda	Hydrobiidae Gastropoda	Physidae Gastropoda	Planorbidae Gastropoda	Thiaridae Gastropoda	Hemiptera Hemiptera	Corixidae Hemiptera	Gerridae Hemiptera	Mesoveliidae Hemiptera	Nepidae Hemiptera	Notonectidae Hemiptera	Pleidae Hemiptera	Veliidae Hemiptera	Corallanidae Isopoda	Crambidae Lepidoptera	Nematoda Nematoda	Coenagrionidae Odonata	Cordulephyidae Odonata	Corduliidae Odonata	Gomphidae Odonata	Isostictidae Odonata	Libellulidae Odonata	Lindeniidae Odonata	S.O. Odonata	S.O. Zygoptera Odonata	Oligochaeta Oligochaeta	Trichoptera Trichoptera	Calamoceratida Trichoptera	Ecnomidae Trichoptera	Hydropsychidae Trichoptera	Hydroptilidae Trichoptera	Leptoceridae Trichoptera	Philopotamidae Trichoptera	OTHER GROUP	Cladocera Cladocera	Copepoda Copepoda	Ostracoda Ostracoda
June 20	19																																			i				
BUD2	EDGE		-	-	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-
BUD2	BED		-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-
UBR2	EDGE		-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	\checkmark	-	-	-	\checkmark	-	-	-	\checkmark	-	\checkmark	-	-	-	-	-
UBR2	BED		-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-	-	-	-
UBR2	RIFFLE		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	-	-	-
CAP2A	EDGE		-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
CAP2A	BED		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-
CAP2A	RIFFLE		-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-
LBR1A	EDGE		-	-	-	-	-	\checkmark	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	√	-	-	-	-	-
LBR1A	BED		-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	- [_	-	-	-

frc environmental

		GROUP	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Hemiptera	Isopoda	Lepidoptera	Nematoda	Odonata	Odonata	Odonata	Odonata	Odonata	Odonata	Odonata	Odonata	Odonata	Oligochaeta	Trichoptera	Trichoptera	Trichoptera	ichoptera	Trichoptera	Trichoptera	Trichoptera	GROUP	Cladocera	Copepoda	Ostracoda							
		ច	Ü	Ö	Ö	Ö	Ö	Ö	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	<u>s</u>	Le	ž	ae O		ŏ	ŏ	ŏ	ŏ	ŏ	ŏ		ō	Ę		Ļ	ae Tr	Ę	Ę	-	ច	ប	ŏ	Ő
SITE	HABITAT	FAMILY	Ancylidae	Bithyniidae	Hydrobiidae	Physidae	Planorbidae	Thiaridae	Hemiptera	Corixidae	Gerridae	Mesoveliidae	Nepidae	Notonectidae	Pleidae	Veliidae	Corallanidae	Crambidae	Nematoda	Coenagrionidae	Cordulephyidae	Corduliidae	Gomphidae	Isostictidae	Libellulidae	Lindeniidae	S.O.	S.O. Zygoptera	Oligochaeta	Trichoptera	Calamoceratida	Ecnomidae	Hydropsychidae Trichoptera	Hydroptilidae	Leptoceridae	Philopotamidae	OTHER	Cladocera	Copepoda	Ostracoda
GW	EDGE		-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	\checkmark	-	-	_	-	-
GW	BED		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
GW	RIFFLE		-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
SEH2	EDGE		-	-	-	-	\checkmark	-	-	-	-	-	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	-	\checkmark	-	-	-	\checkmark	-	-	-	-	-	\checkmark	-	-	-	-	-
SEH2	BED		-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-
SEH2	RIFFLE		-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	_	-	-
SEH1	EDGE		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	\checkmark	-	-	_	-	-
SEH1	BED		\checkmark	-	-	-	-	-	-	\checkmark	-	-	-	_	-	-	-	_	_	-	-	-	_	_	\checkmark	\checkmark	-	_	-	-	-	_	-	-	\checkmark	_	_	-	-	-
BUD3	EDGE		-	_	_	-	\checkmark	_	_	\checkmark	-	-	_	_	-	-	-	_	-	\checkmark	_	_	\checkmark	-	\checkmark	-	-	-	\checkmark	\checkmark	_	-	-	-	\checkmark	-	-	_	_	-
BUD3	BED		_	_	_	_	_	√	_	√	_	_	_	_	_	_	_	_	\checkmark	_	_	_	_	_	_	_	_	_	√	√	_	_	_	_	\checkmark	_	_	_	_	_
SUT1	EDGE		√	_	_	√	\checkmark	√	_	√	_	_	√	√	\checkmark	√	-	_	_	√	~	_	_	\checkmark	\checkmark	_	_	_	_	_	_	_	_	_	\checkmark	_	_	_	_	_
SUT1	BED		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	√	_	_	_	_	_	_	_	_	_	_	_
SUT2A	EDGE		\checkmark	\checkmark	_	_	√	_	_	1	\checkmark	√	_	_	\checkmark	\checkmark	_	_	_	~	_	_	_	_	\checkmark	_	_	√	_	1	_	√	_	_	√	_	_	_	_	_
SUT2A	BED		_	\checkmark	_	_	~	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	√	_	_	_	_	_	√	_	_	_	_	_
Novemb	er-Decemb	er 201	8																																					
BUD2	Edge		_	_	\checkmark	_	_	\checkmark	_	\checkmark	_	_	_	_	_	_	_	_	_	_	_	_	\checkmark	_	_	_	_	_	\checkmark	_	_	_	_	_	_	_	_	_	\checkmark	\checkmark
BUD1	Edge		-	-	-	-	\checkmark	\checkmark	\checkmark	_	-	\checkmark	-	_	\checkmark	-	-	\checkmark	-	\checkmark	_	_	_	-	\checkmark	-	\checkmark	-	\checkmark	-	_	-	-	\checkmark	\checkmark	-	_	-	\checkmark	\checkmark
BUD1	Macrop hyte		-	-	-	-	√	√	-	~	_	-	_	-	-	-	_	-	_	_	_	_	-	_	√	_	_	-	-	-	-	-	-	√	√	-	-	~	-	✓

frc environmental